Технология распознавания лиц — новая эра в видеоаналитике, системах видеонаблюдения и СКУД



Мы являемся свидетелями грандиозных событий, большинство из которых еще не наступили, но уже прорастают сквозь асфальт настоящего. Одно из таких событий это технология распознавания лиц. В 2017 году мы стали свидетелями выхода ее в массовый продакшн, где она уже успела показать фантастическую эффективность! И до дрожи в коленках напугать целые государства. Весь страх и трепет систем распознавания лиц, в нашей статье.

 

Оглавление

Что такое распознавание лиц?
Как работает система распознавания лиц?
Технологии распознавания лиц
       2D-распознавание
       3D-распознавание
       Распознавание по текстуре кожи лица
       Распознавание по тепловизионному изображению лица 
 

Что такое распознавание лиц?

Распознавание лиц (Face Recognition - англ.) - это одни из наиболее перспективных методов биометрической бесконтактной идентификации человека по лицу.
 
Первые системы распознавания лиц были реализованы как программы устанавливаемые на компьютер. В наше время технология распознавания лиц наиболее часто используется в системах видеонаблюдения, контроля доступа, на разнообразных мобильных и облачных платформах. Журнал Массачусетского технологического института - MIT Technology Review включил технологию распознавания лиц в список 10 прорывных технологий 2017 года.
 
Если вы думаете что про фантастическую эффективность я для красного словца сболтнул, то не на самом деле я затруднился подобрать должный эпитет. Но вот проиллюстрировать затруднений нет никаких. В Китае в базе данных единой системы слежения и распознавания более миллиарда человек. В реальном времени система использует 170 миллионов камер. 
 
Журналист британской BBC решил проверить (на всякий случай, без излишней самодеятельности, договорившись с властями) сколько времени потребуется на задержание, если он будет перемещаться по Пекину, находясь в базе опасных лиц
Ответ получен: 7 минут
 
Видео на английском, но там и без перевода все понятно, посмотрите это действительно интересно.

Найти человека за 7 минут. Как в Китае следят за каждым вашим шагом from Aleeha Skud on Vimeo.

 

Китайцы, конечно, не считают систему совершенной: они хотят в ближайшие три года добавить ещё каких-то 400 миллионов камер. Чтобы был настоящий китайский масштаб: полмиллиарда камер в реальном времени мониторят 1,4 млрд человек. Ждём реакции Яровой.

 
По оценке Bloomberg, мировой рынок распознавания лиц вырастет с 4,05 млрд. долларов в 2017 году до 7,76 млрд. долларов США к 2022 году.

Где в мире больше всего зарабатывают на технологиях распознавания лиц? По данным www.tractica.com.



 

Как работает система распознавания лиц?

В принципе, система распознавания лиц может быть описана как процесс сопоставления лиц, попавших в объектив камеры с базой данных ранее сохраненных и идентифицированных изображений лиц эталонов.
По структурной реализации системы распознавания лиц можно выделить три распространенные схемы.
 
Анализ видеопотока на сервере
Наиболее распространенная схема реализации — IP-камера передает видеопоток на сервер, на сервере специализированное программное обеспечение для выполняет анализ видеопотока и сравнение полученных из видеопотока изображений лиц, с базой лиц эталонов.


Недостатками такой схемы будут, высокая нагрузка на сеть, высокая стоимость сервера, даже к самому мощному серверу можно подключить ограниченное количество IP-камер, т.е. чем больше система тем больше серверов.
Преимуществом является возможность использовать уже существующую систему видеонаблюдения. 
 
Анализ видеопотока на IP-камере
В данном случае анализ изображения будет производится на самой камере, а на сервер будут передаваться обработанные метаданные.


Недостатки — нужны специальные камеры, выбор которых в данный момент крайне мал, стоимость камер выше чем обычных. Также в системах разных производителей будет по разному решаться вопрос хранения и размера базы данных распознанных лиц эталонов, а также вопросов взаимодействия софта на камере и софта на сервере.
Преимущества — подключение практически неограниченного количества камер к одному серверу

 

Анализ видеопотока на устройстве контроля доступа

В отличии от первых двух схем где используются IP-камеры, в данном случае камера встроена в устройство контроля доступа, которое кроме распознавания лица которое естественно происходит на устройстве, выполняет функции управления доступом как правило через турникет или электрозамок установленный на дверь. База данных лиц эталонов хранится на устройстве, и как правило уже не в виде фотоизображений.

Недостатки — как правило все такие устройства выпускаются для использования в помещениях.
Преимущества — низкая стоимость систем по сравнению с системами видеонаблюдения используемыми для распознавания лиц.
 
В любом случае успех реализации проектов по распознаванию лиц зависит от трех важных факторов:
 • Алгоритм распознавания
• Базы данных распознанных лиц (эталонов)
• Быстродействие алгоритма

Технология распознавания лиц

Как правило система состоит из камеры видеонаблюдения и программного обеспечения которое выполняет анализ изображений. Программное обеспечение для распознавания лиц основано на обработке изображений и вычислениях сложных математических алгоритмов, которые требуют более мощный сервер, чем обычно требуется для систем видеонаблюдения.
 
Нас будет в первую очередь интересовать качественные показатели программного обеспечения. Во вторую, какие серверные мощности понадобятся для анализа изображения и обработки базы данных с изображениями, ну и в третьи мы рассмотрим вопрос применимости IP-камер для целей распознавания лиц. Отдельного внимания заслуживают так называемые «stand alone» устройства, которые выполняют обработку изображений непосредственно на самом устройстве а не на сервере, также на таких устройствах может быть в память база данных лиц эталонов.
 
2D-распознавание лиц
В основе технологии 2D (двумерного) распознавания лиц, лежат плоские двухмерные изображения. Алгоритмы распознавания лиц используют: антропометрические параметры лица, графы - модели лиц или эластичные 2D-модели лиц, а также изображения с лицами представленные некоторым набором физических или математических признаков. Рейтинг популярности алгоритмов распознавания лиц мы рассмотрим ниже.

Распознавание 2D изображений одна из наиболее востребованных технологий на данный момент. Так как основные базы данных идентифицированных лиц накопленные в мире - именно двухмерные. И основное оборудование, уже установленное, по всему миру тоже 2D — по данным на 2016 год -  350 миллионовкамер видеонаблюдения. Собственно поэтому основной спрос приходится именно на 2D системы распознавания лиц.

А спрос как известно стимулирует предложение, заставляя разработчиков максимизировать усилия на совершенствовании именно 2D технологии. Эти усилия приносят иногда неожиданно интересные результаты, например в виде создания трехмерной модели лица на основе 2D изображения. Исследователи из университетов Ноттингема и Кингстона представили проект по 3D-реконструкции лиц на основе одного одного единственного изображения. Нейросеть, через которую пропустили множество объёмных 3D-моделей людей и обычных портретов воссоздает объемные лица людей на основе всего одного двумерного изображения лица.



Преимущества
Огромным преимуществом 2D распознавания лиц является наличие готовых баз данных лиц эталонов, и готовой инфраструктуры. Максимальный спрос придется именно на этот сегмент, а спрос будет стимулировать разработчиков совершенствовать технологии.

Недостатки
Более высокие коэффициенты ошибок FAR и FRR по сравнению с 3D распознаванием лиц.


3D-распознавание лиц
3D распознавание (Three-dimensional face recognition - англ.) производится как правило по реконструированным трехмерным образам. Технология 3D распознавания лиц имеет более высокие качественные характеристики. Хотя конечно и она не является идеальной. 

Существует несколько разнообразных технологиях 3D сканирования. Это могут быть лазерные сканеры с оценкой дальности от сканера до элементов поверхности объекта, специальные сканеры со структурированной подсветкой поверхности объекта и математической обработкой изгибов полос, либо это могут быть сканеры, обрабатывающие фотограмметрическим методом синхронные стереопары изображений лиц.

Одним из наиболее исследованных потребителями и экспертами 3D сканеров является знаменитый Face ID, от компании Apple. Опыт использования Face IDкрайне интересен и показателен, потому что по сути это единственное устройство с технологией 3D распознавания лиц выпущенное на масс маркет, если конечно можно считать телефон за сотку устройством для масс маркета.

3D технология от Apple единственная в мире использует - вертикально-излучающие лазеры (VCSEL), по слухам суммарно потратив на разработку Face ID от 1,5 до 2 миллиардов долларов. Поставщиком VCSEL для Apple выступают две компании Finisar Corp (инвестиции Apple - 390 млн. долларов) и Lumentum Holdings. И судя по тому что другие 3D технологии, не показывают такой эффективности как Face ID, разблокировка по лицу на смартфонах на Android, появится не скоро.

Естественно с задачами идентификации близнецов Face ID не справляется, хотя этого никто и не ожидал, но даже с близкими родственниками случаются фейлы.
Ну и скорее комичный момент, но по началу Face ID не различал азиатов, но проблему настолько быстро пофиксили, что Apple даже не успели вчинить ни одного иска за расизм.

Преимущества 3D
Большая точность и меньшее количество ошибок пока недостижимое для 2D систем распознавания лиц.

Недостатки 3D
Достаточно легко подделать для профессионалов
Даже Face ID несмотря на всю крутость был взломан вьетнамской компанией Bkav сразу после поступления в продажу. Маска была создана с помощью 3D принтера. Себестоимость создания маски всего $150. Создание маски достаточно сложно для обычного человека, и ваша мама вряд ли сможет это повторить, но для профессионалов это как два пальца об асфальт.

Не используйте 3D распознавания лиц для защиты от несанкционированного доступа к ноутбукам, смартфонам, помещениям с особым уровнем секретности, все они могут быть с легкостью взломаны профессионалами.

• 3D распознавание требует специальных камер для сканирования, которые в несколько раз дороже обычных камер видеонаблюдения которые используется в 2D распознавании.
• Отсутствие готовых баз данных идентифицированных лиц, по сравнению с 2D распознаванием
• Распознавание близнецов, остается сложной задачей для алгоритмов распознавания лиц. В среднем в мире рождается 13.1 близнецов на 1000 новорожденных, и эта цифра сильно колеблется в зависимости от географического региона.

Распознавание лица по текстуре кожи лица
Изображения с высоким разрешением еще один фактор в совершенствовании технологии распознавания лиц, именно благодаря высокому разрешению стал возможен очень подробный анализ текстуры кожи. 

При таком анализе определенная область кожи лица, может быть захвачена как изображение, а затем разбита на более мелкие блоки, которые превращаются в математические измеримые пространства, в которых записываются линии, поры и фактическая текстура кожи. 

Технология может идентифицировать различия между близнецами, что пока невозможно использовать с помощью программного обеспечения для распознавания лиц». В случае объединения распознавание лица с анализом поверхностной текстуры, точность идентификация может сильно увеличиться.  

Распознавание лица по тепловизионному изображению
Использование тепловизионных камер, для целей распознавания лиц на данный момент считается перспективным направлением для разработки, но готовых для внедрения коммерческих решений пока нет. 

  
Технология достаточно перспективная так как позволяет нивелировать болевые точки 2D-распознавания.

  • Распознавания лиц в полной темноте и в условиях недостаточного освещения
  • Макияж, прическа, борода, шляпа, очки — не являются проблемой для тепловизионных камер
  • Позволяют распознавать близнецов



 

 

Можно выделить два направления, в которых ведется разработка:
• Идентификация по заранее созданным термограммам идентифицированных лиц. Здесь проблемы те же что и с 3D-распознавание, готовых баз данных эталонов нет, оборудование дорогое.
• Идентификация человека по изображениям полученным с тепловизионной камеры, а в качестве лиц эталонов используются база данных обычных двумерных изображений. Решается задача как вы наверное уже догадались использованием глубоких нейронных сетей.

Распознавание лиц по текстуре кожи и по тепловизионному изображению. работает, только в лаборатории, и то не идеально. Но мы внимательно наблюдаем, и если что сразу дадим вам знать.

 

Конец 1 части.

Источник: https://securityrussia.com